Vrite your name here Surname	Othe	r names
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate Number
Statistics S	C 2	
Advanced/Advance		
	d Subsidiary	Paper Reference WST03/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P51428A
©2018 Pearson Education Ltd.

A random sample of 9 footballers is chosen to participate in an obstacle course. The time taken, y seconds, for each footballer to complete the obstacle course is recorded, together with the footballer's Body Mass Index, x. The results are shown in the table below.

Footballer	Body Mass Index, x	Time taken to complete the obstacle course, y seconds	d	12
A	18.7	690 🕝	5	25
В	19.5 (2)	801@	7	49
C	20.2 ③	723	5	25
D	20.4 (4)	633 ②	2	4
E	20.8 (5)	660 (5)	0	0
F	21.9	655 😩	2	4
G	23.2 (7)	711 🗇	0	0
Н	24.3 🕲	642 ③	5	25
I	24.8	607 ₍₎	8	64
			_	196

Russell claims, that for footballers, as Body Mass Index increases the time taken to complete the obstacle course tends to decrease.

- (a) Find, to 3 decimal places, Spearman's rank correlation coefficient between x and y. (5)
- (b) Use your value of Spearman's rank correlation coefficient to test Russell's claim. Use a 5% significance level and state your hypotheses clearly. (4)

The product moment correlation coefficient for these data is -0.5594

- (c) Use the value of the product moment correlation coefficient to test for evidence of a negative correlation between Body Mass Index and the time taken to complete the obstacle course. Use a 5% significance level. **(2)**
- (d) Using your conclusions to part (b) and part (c), describe the relationship between Body Mass Index and the time taken to complete the obstacle course. (1)

(9)
$$1-6 I d^{2}$$

$$n(n^{2}-1)$$

$$= 1- \frac{6C 196}{9(81-1)}$$

$$= 0.633$$
(9) $H_{0}: p=0$

$$H_{1}: p < 0.$$
From tables; (rih(al value))
$$= 0.600.$$

Question 1 continued	
0.633 (From	BMI and the time taken to
	Jana (he reighouship between
0.600	BIMI and the time taken to
	(BIMILIE - 11 ONZI dC(6 (901)
0.63370,600 and	is non Gnear.
lies in the critical	
region:	
- Enough evidence to	
reject to and test	
reject the and test is significant.	
Russel's claim is	
rue.	
(c) From tables,	
v=+0.2822	The control and a second secon
0:5822	
0.5594	
:, 6.5594 Lo.5822	
: doesn't lie in	
critical region	
J	
: Here is no -ve	
correlgtion.	

2. A random sample of 75 packets of seeds is selected from a production line. Each packet contains 12 seeds. The seeds are planted and the number of seeds that germinate from each packet is recorded. The results are as follows.

Number of seeds that germinate from each packet	6 or fewer	7	8	9	10	11	12
Number of packets	0	3	5	18	28	17	4

(a) Show that the probability of a randomly selected seed from this sample germinating is 0.82

(2)

A gardener suggests that a binomial distribution can be used to model the number of seeds that germinate from a packet of 12 seeds.

She uses a binomial distribution with the estimated probability 0.82 of a seed germinating. Some of the calculated expected frequencies are shown in the table below.

Number of seeds that germinate from each packet	6 or fewer	7	8	9	10	11	12
Expected frequency	S	2.80	7.97	r	22.04	18.26	6.93

(b) Calculate the value of r and the value of s, giving your answers correct to 2 decimal places.

(3)

(c) Test, at the 10% level of significance, whether or not these data suggest that the binomial distribution is a suitable model for the number of seeds that germinate from a packet of 12 seeds. State your hypotheses clearly and show your working.

(7)

(9) f:=PixN	9.84 = 0.82 as req.
fi = A Pi	$(b) \binom{n}{x} p^{x} (1-p)^{n-x}$
Zfx = (7x3)+(8x1)+ Zf (9x18)+(10x281+(11x1)+ +(12x4)	$\binom{12}{9} \binom{0.82}{9} \binom{9}{1-0.82}^{3}$
75	r = 16.13
= 9.84.	75-(2.8 + 7.97 +16.13 + 22.64 + 18.26+6.93)
	5 = 0.87/

Question 2 continued	
(() Ho: Binomial distribution	
is a witable model.	
13 4 MILLER MOULT	
Hi: Binomial distribution	
is not a suitable	
model.	
8 or less a 10 11	12
Oi 805 8 18 28 17	
Ei 11.64 22.04 18.26 18.26	6.93
16.13 22.04	
Z 012 - N.	
£i	
20.19	
= 79.29 - 75 = 4.29	
V = 5-1-1 = 2	
V =)	
From tables	
x2 = 6251	
4.29 6.251	
. It doesn't fall in CR	
not enough evidence	
to reject Ho.	
Binomial distribution	
is a svitable model	

3. Star Farm produces duck eggs. Xander takes a random sample of 20 duck eggs from Star Farm and their widths, x cm, are recorded. Xander's results are summarised as follows.

$$\sum x = 92.0 \qquad \sum x^2 = 433.4974$$

(a) Calculate unbiased estimates of the mean and the variance of the width of duck eggs produced by Star Farm.

(3)

Yinka takes an independent random sample of 30 duck eggs from Star Farm and their widths, ycm, are recorded. Yinka's results are summarised as follows.

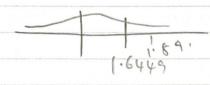
$$\sum y = 142.5 \qquad \sum y^2 = 689.5078$$

(b) Treating the combined sample of 50 duck eggs as a single sample, estimate the standard error of the mean.

(5)

Research shows that the population of duck egg widths is normally distributed with standard deviation 0.71 cm.

The farmer claims that the mean width of duck eggs produced by Star Farm is greater than 4.5 cm.


(c) Using your combined mean, test, at the 5% level of significance, the farmer's claim. State your hypotheses clearly.

(5)

$(9) \bar{x} = 2x = 92$	Ot Zw = Zx+ Zy
~ 20 = 4.6	Zw= 142:5192 = 234.5-) 234.5
2 . (, 22, 1,9, 24, 25, 6)	$Zx^{2} = 433.4974$ = $\frac{4.69}{100}$
x2 = 1 (433.4974-20(4.	Ty=689,5078,
= 0.542	Zw2=1123.0052.
(b) Standard error = T	8 2 = 1 (1123.0052-50(4.69))
Zx = 92	x ² = 0.473.
Zy= 142.5	$\frac{8}{Vn} = \frac{\sqrt{0.473}}{\sqrt{00}} = 0.0973$

Question	3	con	tin	ued
----------	---	-----	-----	-----

$$= \frac{4.69 - 4.5}{0.71}$$

1.89>1.6449.

:. 1-89 lies in CR .. Test is significant

: enough evidence to reject the

eggs is greater than 4-5cm

4. A company selects a random sample of five of its warehouses. The table below summarises the number of employees, in thousands, at each warehouse and the number of reported first aid incidents at each warehouse during 2017

Leave blank

Warehouse	A	В	C	D	E	Tota 1
Number of employees, (in thousands)	2	1	3.8	3	2.2	12
Number of reported first aid incidents	15	10	40	26	23	114

The personnel manager claims that the mean number of reported first aid incidents per 1000 employees is the same at each of the company's warehouses.

(a) Stating your hypotheses clearly, use a 5% level of significance to test the manager's claim.

(7)

Jean, the safety officer at warehouse C, kept a record of each reported first aid incident at warehouse C in 2017. Jean wishes to select a systematic sample of 10 records from warehouse C.

(b) Explain, in detail, how Jean should obtain such a sample.

(2)

Ho: Mean number of reported first aid incidents per 1000 employees is the same at each of the company's wavehouses.

Hi: Mean number of reported first aid incidents per 1000 employees is not the same at each company wavehouse.

Expected values:

$$A : \frac{2 \times 114}{12} = 19$$

$$8: \frac{1\times114}{12} = 9.5$$

$$c: \frac{3.8 \times 114}{12} = 36.1$$

$$b: \frac{3 \times 114}{12} = 28.5$$

$$E: \frac{2.2 \times 114}{12} = 20.9$$

Question 4 con	tinued		/a = 3 ²	
Wavehouse	Observed	Expected	(0-E) ²	
A	15	19	0.84211	
B	10	9.5	0.02632	
	40	36.1	0.42133	
D	26		0.21930	
E	23		0.21190	
<u> </u>				
	•	IOTA	1.720	
X2= 5(0-	<u>E)</u>			
<i>=</i> 1·72	•			
v= 5-1				
= 4				
at 5%. s.L	. , CR : χ²	79.488		
1.72 < 9.4	88			
		ager's clain	n is supporte	e d
		J	•	
b) 40 = 4				
	each record	from 1-4	10. Using 7	ne random number
table,	select a r	ecord be	tween 1-4	, then select every
4th rec	covd after	the first	number sel	ected

5. A factory produces steel sheets whose weights, $X \log$, have a normal distribution with an unknown mean $\mu \log$ and known standard deviation $\sigma \log$.

A random sample of 25 sheets gave both a

- 95% confidence interval for μ of (30.612, 31.788)
- c% confidence interval for μ of (30.66, 31.74)
- (a) Find the value of σ

(3)

(b) Find the value of c, giving your answer correct to 3 significant figures.

(4)

XNN (4, 82)	31.2 ± (I. 1.5 a
	Ś
$\times \pm CI \cdot $ $\times $ $n = 52.$	31.2+ (I = 1.5 = 31.74.
√n	J
	31.2-CI.1.5 = 30.66.
x + 1.96. x	
√25 ⁻	2 ((I. r) = width.
	Vn'
X+1.96.8 = 31.788	
7	2(CI. 1.5)=1.08
	1
\bar{x} -1.96 - 8 = 30.612	CI = 1.8
5	
1.12-6.	1.8
3.92. 8 = 1.176.	-1.8 1.8
5	
	From tables
8=1.5	2 (1 2 9 (14)
	2(1-0.9641) * × 100
(a) = 19/10 (2-11)	
b) x=1.96.1.5+30.612	100-AN)
)	= 92.82
x=31,2	

The continuous random variable Y is uniformly distributed over the interval

$$[a-3, a+6]$$

where a is a constant.

A random sample of 60 observations of *Y* is taken.

Given that
$$\overline{Y} = \frac{\sum_{i=1}^{60} Y_i}{60}$$

(a) use the Central Limit Theorem to find an approximate distribution for \overline{Y}

(3)

Given that the 60 observations of Y have a sample mean of 13.4

(b) find a 98% confidence interval for the maximum value that Y can take.

(4)

$\overline{Y} \sim N \left(P_{1} + \frac{\delta^{2}}{n} \right)$	(b) $\overline{y} = 13.4$
$p = \frac{d+\beta}{2} = 9 - \frac{3+9+6}{2}$	13.4 + 2.3263. 59
= 9+3/2	= 13.4 ± 2.32 63, 315
$y^2 - \frac{(b-a)^2}{12} = \frac{(9+6-9+3)}{12}$	=(12.62, 14.18) 9+3/2
$=\frac{9^2-27}{12}$	12.62 C9+3/2 C14.18
$\frac{27 \div 60}{4} = \frac{9}{80}$	11.12 6 9 6 12.68.
	Maxvalue
9 NN (9+3/2, 9/80).	11.12+6 29+6 2 12.68+6
	[17·12, 18·68].

7. (i) As part of a recruitment exercise candidates are required to complete three separate tasks. The times taken, A, B and C, in minutes, for candidates to complete the three tasks are such that

$$A \sim N(21, 2^2)$$
, $B \sim N(32, 7^2)$ and $C \sim N(45, 9^2)$

The time taken by an individual candidate to complete each task is assumed to be independent of the time taken to complete each of the other tasks.

A candidate is selected at random.

(a) Find the probability that the candidate takes a total time of more than 90 minutes to complete all three tasks.

(4)

(b) Find P(A > B) (4)

(ii) A simple random sample, X_1 , X_2 , X_3 , X_4 , is taken from a normal population with mean μ and standard deviation σ

Given that

$$\overline{X} = \frac{X_1 + X_2 + X_3 + X_4}{4}$$

and that

$$P(X_1 > \overline{X} + k\sigma) = 0.1$$

where k is a constant,

find the value of k, giving your answer correct to 3 significant figures.

(7)

(9) let AtB+(-,w.	=0.7549
P(W>90)	b) p(A-B>0)
E(W) = E(A) + E(B) + E(C) = 21+32 + 45 = 98	E(A) - E(B) = 21 - 32 = -11
Var(w)= Var(A) + Var(B) + Var(c) = TNN (98,134) / (7) 90-98	$Var(A) + Var(B) = 2^2 + 7^2$ = 53
V(34)	*NN (-11,53)
p(7)-0.591)	p(x>0)
-0671	$p(2) \frac{11}{\sqrt{53}} = p(2) \frac{1.51}{1-0.9345}$

Question 7 continued

ii) $P(x, -\bar{x} > k\sigma) = 0.1$	p(Z) k8-0) =0.1
	3/182
$E(X_1 - \overline{X})$	('4 '

$$= \nu - \nu = 0.$$

$$= \frac{1}{16} \left[9 \delta^2 + 3 \delta^2 \right]$$

Leave